yawning_titan.experiment_helpers.sb3#

Functions

init_env

Use the Stable Baselines 3 Monitor wrappper to wrap an environment in order to enable monitoring.

print_metric_stats

Take a metric name and a list of values and prints associated stats.

print_policy_eval_metrics

Output policy evaluation metrics and summary statistics.

train_and_eval

Train and Evaluate an agent.

yawning_titan.experiment_helpers.sb3.init_env(env, experiment_id)[source]#

Use the Stable Baselines 3 Monitor wrappper to wrap an environment in order to enable monitoring.

Parameters:
  • env – the registered name of an OpenAI gym environment (str)

  • experiment_id – a UID for the experiment (str)

Returns:

A Stable Baselines 3 Monitor Wrapped Gym Environment

yawning_titan.experiment_helpers.sb3.train_and_eval(agent_name, environment, training_timesteps, n_eval_episodes)[source]#

Train and Evaluate an agent.

Parameters:
  • agent_name – the algorithm name (str)

  • environment – An initlaised Open AI Gym environment

  • training_timesteps – total no. of training timesteps (int)

Returns:

a trained Stable Baselines 3 agent eval_pol: the output from the Stable Baselines 3 ‘evaluate_policy’ function

Return type:

chosen_agent

yawning_titan.experiment_helpers.sb3.print_metric_stats(metric_name, metrics, raw_metrics=False)[source]#

Take a metric name and a list of values and prints associated stats.

Parameters:
  • metric_name – The metric name (str)

  • metrics – A list of ints/float metric readings(list)

yawning_titan.experiment_helpers.sb3.print_policy_eval_metrics(agents, evals, raw_metrics=False)[source]#

Output policy evaluation metrics and summary statistics.

Parameters:
  • agents – An index of the agents that were evaluated(list)

  • evals – The output from Stable Baselines 3 ‘evaluate_policy’ for each of the agents trained