

© Crown copyright 2022 Dstl

Explaining presumptive arguments
This memo describes a method for generating Dung argument frameworks from Argument Interchange

Format (AIF) argument graphs that maintains a direct relationship between S-nodes in the AIF argument

graph and corresponding arguments in the argument framework. This allows extensions derived from

evaluation of the argument framework to be simply related to subgraphs of the AIF argument graph.

Since the AIF argument graph is linked data, and therefore connected (or connectable) to other sources

of information, these extension AIF subgraphs can be interpreted in the context of linked data. This

supports explanation of AIF argument graphs.

Argument framework
Dung [1] defines an argument framework as a pair 𝐹 = (𝐴, 𝐷), where 𝐴 is a set of arguments, and 𝐷 ⊆

𝐴 × 𝐴 is a binary relation on attacks between arguments. We say argument 𝑎 attacks argument 𝑏 if

(𝑎, 𝑏) ∈ 𝐷. The set of arguments {𝑎 ∈ 𝐴 | 𝑎 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑏} is denoted �̅�. An extension of a framework 𝐹 is a

set of arguments ℇ ⊂ 𝐴, and argument frameworks are evaluated by identifying which extensions are

acceptable with respect to some semantics 𝜎(𝐹) ⊂ 2𝐴.

Argument Interchange Format
An AIF [2] argument graph 𝐺 is a simple digraph (𝑉, 𝐸) where

 𝑉 = 𝐼 ∪ 𝑅𝐴 ∪ 𝐶𝐴 is the set of nodes in 𝐺, where 𝐼 are the I-nodes, 𝑅𝐴 are the RA-nodes, and 𝐶𝐴

are the CA-nodes; and

 𝐸 ⊆ 𝑉 × 𝑉 \ 𝐼 × 𝐼 is the set of edges in 𝐺; and

 if 𝑣 ∈ 𝑉 \ 𝐼 then 𝑣 has at least one direct predecessor and exactly one direct successor.

Constructing an argumentation framework from AIF
We construct a Dung framework 𝐹(𝐴, 𝐷) from an AIF argument graph 𝐺 so that 𝐴 = 𝑆 = 𝑅𝐴 ∪ 𝐶𝐴; and

𝐷 ⊆ 𝑆 × 𝑆 having attacks constructed according to the rules

1. Rebut: 𝑠𝑎 ∈ 𝑠�̅�, 𝑠𝑏 ∈ 𝑠�̅� if 𝛿𝑎𝑏 = 0 and 𝐶𝑜𝑛𝑐(𝑠𝑎) = 𝐶𝑜𝑛𝑐(𝑠𝑏)

2. Undercut: 𝑠𝑎 ∈ 𝑠�̅�, 𝑠𝑏 ∈ 𝑠�̅� if 𝑠𝑎 ∈ 𝐶𝐴 and 𝐶𝑜𝑛𝑐(𝑠𝑎) = 𝑠𝑏

3. Undermine: 𝑠𝑎 ∈ 𝑠�̅� if 𝑠𝑎 ∈ 𝐶𝐴 and 𝐶𝑜𝑛𝑐(𝑠𝑎) ∩ 𝑃𝑟𝑒𝑚(𝑠𝑏) ≠ ∅

where 𝛿𝑎𝑏 is the Kronecker delta of the AIF node types; and 𝐶𝑜𝑛𝑐 and 𝑃𝑟𝑒𝑚 are functions that return the

conclusions and premises of 𝑆 respectively.

We are dealing with presumptive arguments here, where the canonical truth of premises and conclusions

is often impossible to determine. In this context, an undercutting argument often raises questions or

doubts about an inference rather that strictly defeating it; and a rebuttal often signals a difference of

opinion rather than disproval of a conclusion. For these reasons, we make rules (1) and (2) symmetric so

that rebuttals and undercuts are not necessarily accepted when the argument framework is evaluated.

Rule (3) is asymmetric however. This makes arguments that challenge the premises of other arguments

“stronger” in the sense that they are not automatically counter-attacked. This encourages arguments

rooted in evidence.

The construction creates a 1: 1 mapping between S-nodes in an AIF argument graph and arguments in an

argument framework. Some evaluation of the argument framework will produce extensions ℇ that can be

directly mapped back to the corresponding set of S-nodes 𝑆(ℇ). The AIF argument subgraph

corresponding to an extension can be induced from the original AIF argument graph by the set of nodes

𝑆(ℇ) ∪ 𝑃𝑟𝑒𝑚(𝑆(ℇ)) ∪ 𝐶𝑜𝑛𝑐(𝑆(ℇ)).

Partition semantics
We can use semantic information in the AIF argument map to select or partition extensions of the

argument framework. For example, we might want to label some I-nodes in the AIF argument graph as

hypotheses 𝐻 ⊂ 𝐼, and provide an explanation regarding some particular hypothesis ℎ ∈ 𝐻. The problem

here is that arguments, and their acceptability in terms of some extension semantics, are defined in

terms of S-nodes rather than I-nodes. We therefore need to relate acceptable arguments to acceptable

information.

We define the acceptable information relating to extension ℇ as 𝐼𝑎𝑐𝑐 = (𝑃𝑟𝑒𝑚(ℇ ∩ 𝐶𝐴) ∩

𝐼 \ 𝐶𝑜𝑛𝑐(𝑆)) ∪ 𝑃𝑟𝑒𝑚(𝑆 ∩ 𝑅𝐴) ∪ 𝐶𝑜𝑛𝑐(𝑆 ∩ 𝑅𝐴). That is to say, we accept the premises and conclusions

of RA-nodes, together with the premises of CA nodes on the condition that they are not also the

conclusion of some other S-node. The set of hypotheses acceptable to an extension is 𝐻𝑎𝑐𝑐(ℇ) =

𝐼𝑎𝑐𝑐(ℇ) ∩ 𝐻. Since 𝐻𝑎𝑐𝑐 ∈ 2𝐻, we can partition the set of extensions produced by an evaluation of the

argument framework by acceptable hypotheses, so that a partition 𝑃�́� = {ℇ |𝐻𝑎𝑐𝑐(ℇ) = �́�, �́� ∈ 2𝐻}. We

can then consider that the partition 𝑃{ℎ} supports hypothesis ℎ.

Notions of extension semantics can be extended to partition semantics. For example, if ℎ ∈ 𝐶𝑜𝑛𝑐(𝑆) then

there must be some 𝑠 ∈ 𝑅𝐴 in each extension of 𝑃{ℎ} that has ℎ as its conclusion, but this need not

necessarily be the same RA-node in each extension. A partition sceptically accepts ℎ without there

necessarily being any argument that is sceptically acceptable in the extensions that make up the

partition.

We designate an argument in ℇ equivalent to an RA-node as support, and an argument equivalent to a

CA-node as an objection. We can then define necessary support in a partition 𝑃 as ⋂ 𝑠𝑠∈𝑃∩𝑅𝐴 , sufficient

support as ⋃ 𝑠𝑠∈𝑃∩𝑅𝐴 , necessary objections as ⋂ 𝑠𝑠∈𝑃∩𝐶𝐴 , and sufficient objections as ⋃ 𝑠𝑠∈𝑃∩𝐶𝐴 .

Explanation graphs
By construction, 𝑃{ℎ} contains all the acceptable arguments that support ℎ. Note however that if |𝐻| > 1

then each extension of 𝑃{ℎ} must also include arguments that make any ℎ́ ∈ 𝐻, ℎ́ ≠ ℎ unacceptable. In

other words, there must be some 𝑠 ∈ 𝐶𝐴 in each extension of 𝑃{ℎ} that has ℎ́ as its conclusion. A partition

𝑃{ℎ} therefore describes both the support for ℎ and the objections to any hypotheses in competition with

ℎ. It can be considered an explanation for ℎ.

We can induce an AIF explanation graph for 𝑃{ℎ} in much the same way as for extensions above; but with

the sets of RA-nodes and CA-nodes used in the construction drawn from a partition rather than an

extension, and each collected according to either necessary or sufficient semantics as desired. For

example, in explaining the case in favour of ℎ, an explanation graph of sufficient support and necessary

objections is suitable; whereas in seeking to explain the weaknesses of ℎ, the explanation graph of

necessary support and sufficient objections is preferred.

An illustrative example
This section briefly introduces a worked example [3] that will be developed more fully separately.

The Fortitude South example considers arguments hypothesising about the site of the D-Day landings.

There are 5 hypotheses: C: Pas de Calais, N: Normandy, B: Brittany, P: Cotentin Peninsula, and O:

Elsewhere. Of these B, P and O are firmly ruled out by argument. The bulk of the remaining arguments

are concerned with pitting C and N against each other as competing (but not mutually exclusive)

hypotheses. This means that although |𝐻| = 5, only two hypotheses can ever be acceptable so |�́�| = 2.

The full AIF argument graph has 3 components: one rules out O, one rules out both B and P, and the third

(and by far the largest) component concerns C and N. In general, we can evaluate each component of an

AIF argument graph independently; and since the arguments strictly ruling out hypotheses are

uncontroversial, we will omit them altogether from further discussion here.

We construct a Dung argumentation framework as above, and evaluate it with stable semantics [4]. This

produces 48 extensions. Partitioning the 48 extensions by hypotheses gives 4 (= 2|�́�|) partitions:

𝑃{}, 𝑃{𝐶}, 𝑃{𝑁}, 𝑃{𝐶,𝑁}, containing 8, 16, 8 and 16 extensions respectively.

We denote the explanation graphs for 𝑃{𝐶} and 𝑃{𝑁} by 𝐺𝐶
𝑒 and 𝐺𝑁

𝑒 , and consider the explanation graphs

of sufficient support and necessary objections for each. The AIF argument graph 𝐺 has a sub-argument,

concerning evidence of troop dispositions and commands, which produces an ORBAT conclusion that

supports C and objects to N. The ORBAT argument itself is acceptable to both 𝑃{𝐶} and 𝑃{𝑁}; but in 𝐺𝐶
𝑒 it is

connected to the graph component that contains C, and it is disconnected from the graph component in

𝐺𝑁
𝑒 that contains N. Both 𝐺𝐶

𝑒 and 𝐺𝑁
𝑒 have two other disconnected (from the component containing ℎ)

components in common: one relating to an argument about V-weapon sites that has been explicitly ruled

out for consideration (but kept in the AIF argument graph for the purpose of documenting that fact), and

one that concerns the need for a port, that is defeated by the argument (available only to the Allies)

concerning Mulberry harbours. This characterizes components in an AIF explanation graph that do not

contain ℎ as acceptable but irrelevant information with respect to ℎ.

Conclusion
This memo introduces a method to construct an argument framework from an AIF argument graph which

allows the rich semantics of the AIF graph to be simply related to the extension semantics of the

argument map. In doing so, the notion of partition semantics is introduced.

We propose that methods of scoring argument framework extensions for the purpose of decision making

can form the basis of equivalent methods for scoring argument framework partitions, with the added

benefit of incorporating notions such as irrelevance in extending those measures. Further work in

developing partition semantics is suggested.

The method of constructing argumentation frameworks from AIF argument graphs creates an injective

mapping that allows the results from analysing the argument framework to be readily interpreted in

terms of AIF explanation graphs. This suggests opportunities in explainable AI.

There is also much to explore in exploiting the semantics of the AIF argument graph in partitioning the

argument framework. For example, consideration of argumentation schemes such as Argument from

Consequences, or consideration of the dialogical structure of arguments. These give context to the

evaluation of an argument that may be important in decision-making.

References
1. Dung, P.M., On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial intelligence, 1995. 77(2): p. 321-
357.

2. Bex, F., J. Lawrence, and C. Reed, The Argument Interchange Format (AIF) Specification. 2011.

3. Knox, A. Operation Fortitude. eleatics 2021; Available from:
https://dstl.github.io/eleatics/argumentation/fortitude/.

4. Baroni, P., M. Caminada, and M. Giacomin, An introduction to argumentation semantics. The
knowledge engineering review, 2011. 26(4): p. 365-410.

https://dstl.github.io/eleatics/argumentation/fortitude/

